Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach.
نویسندگان
چکیده
Two types of physiological mechanisms can contribute to growth decline with age: (i) the mechanisms leading to the reduction of carbon assimilation (input) and (ii) those leading to modification of the resource economy. Surprisingly, the processes relating to carbon allocation have been little investigated as compared to research on the processes governing carbon assimilation. The objective of this paper was thus to test the hypothesis that growth decrease related to age is accompanied by changes in carbon allocation to the benefit of storage and reproductive functions in two contrasting broad-leaved species: beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Age-related changes in carbon allocation were studied using a chronosequence approach. Chronosequences, each consisting of several even-aged stands ranging from 14 to 175 years old for beech and from 30 to 134 years old for sessile oak, were divided into five or six age classes. In this study, carbon allocations to growth, storage and reproduction were defined as the relative amount of carbon invested in biomass increment, carbohydrate increment and seed production, respectively. Tree-ring width and allometric relationships were used to assess biomass increment at the tree and stand scales. Below-ground biomass was assessed using a specific allometric relationship between root:shoot ratio and age, established from the literature review. Seasonal variations of carbohydrate concentrations were used to assess carbon allocation to storage. Reproduction effort was quantified for beech stands by collecting seed and cupule production. Age-related flagging of biomass productivity was assessed at the tree and stand scales, and carbohydrate quantities in trees increased with age for both species. Seed and cupule production increased with stand age in beech from 56 gC m(-)(2) year(-1) at 30 years old to 129 gC m(-2) year(-1) at 138 years old. In beech, carbon allocation to storage and reproductive functions increased with age to the detriment of carbon allocation to growth functions. In contrast, the carbon balance between growth and storage remained constant between age classes in sessile oak. The contrasting age-related changes in carbon allocation between beech and sessile oak are discussed with reference to the differences in growing environment, phenology and hydraulic properties of ring-porous and diffuse-porous species.
منابع مشابه
Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determi...
متن کاملTree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands
There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9-140 years old), oak (11-140 years) and alder (4-76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0-15 cm and 16-30 cm were used for the study. In contrast to previously published studies that suggested th...
متن کاملTemporal variation of competition and facilitation in mixed species forests in Central Europe.
Facilitation, reduced competition or increased competition can arise in mixed stands and become essential to the performance of these stands when compared to pure stands. Facilitation and over-yielding are widely held to prevail on poor sites, whereas neutral interactions or competition, leading to under-yielding of mixed versus pure stands, can occur on fertile sites. While previous studies ha...
متن کاملSeasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence.
Forest productivity declines with tree age. This decline may be due to changes in metabolic functions, resource availability and/or changes in resource allocation (between growth, reproduction and storage) with tree age. Carbon and nitrogen remobilization/storage processes are key to tree growth and survival. However, studies of the effects of tree age on these processes are scarce and have not...
متن کاملDecrease in Available Soil Water Storage Capacity Reduces Vitality of Young Understorey European Beeches (Fagus sylvatica L.)—A Case Study from the Black Forest, Germany
Growth and survival of young European beech (Fagus sylvatica L.) is largely dependent on water availability. We quantified the influence of water stress (measured as Available Soil Water Storage Capacity or ASWSC) on vitality of young beech plants at a dry site. The study site was located in a semi-natural sessile oak (Quercus petraea (Mattuschka) Liebl.) stand adjacent to beech stands on a roc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2010